Interdomain interactions in AMPA and kainate receptors regulate affinity for glutamate.

نویسندگان

  • Matthew C Weston
  • Christoph Gertler
  • Mark L Mayer
  • Christian Rosenmund
چکیده

Ionotropic glutamate receptors perform diverse functions in the nervous system. As a result, multiple receptor subtypes have evolved with different kinetics, ion permeability, expression patterns, and regulation by second messengers. Kainate receptors show slower recovery from desensitization and have different affinities for agonists than AMPA receptors. Based on analysis of ligand binding domain crystal structures, we identified interdomain interactions in the agonist-bound state that are conserved in kainate receptors and absent in AMPA receptors. Mutations in GluR6 designed to disrupt these contacts reduced agonist apparent affinity, speeded up receptor deactivation and increased the rate of recovery from desensitization. Conversely, introduction of mutations in GluR2 that enabled additional interdomain interactions in the agonist-bound state increased agonist apparent affinity 15-fold, and slowed both deactivation and recovery from desensitization. We conclude that interdomain interactions have evolved as a distinct mechanism that contributes to the unique kinetic properties of AMPA and kainate receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal Structures of the GluR5 and GluR6 Ligand Binding Cores: Molecular Mechanisms Underlying Kainate Receptor Selectivity

Little is known about the molecular mechanisms underlying differences in the ligand binding properties of AMPA, kainate, and NMDA subtype glutamate receptors. Crystal structures of the GluR5 and GluR6 kainate receptor ligand binding cores in complexes with glutamate, 2S,4R-4-methylglutamate, kainate, and quisqualate have now been solved. The structures reveal that the ligand binding cavities ar...

متن کامل

Glutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala

Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...

متن کامل

Ionotropic Glutamate Receptors and their Role in Neurological Diseases

Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...

متن کامل

Pharmacological Analysis of Ionotropic Glutamate Receptor Function in Neuronal Circuits of the Zebrafish Olfactory Bulb

Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and i...

متن کامل

A Transmembrane Accessory Subunit that Modulates Kainate-Type Glutamate Receptors

Glutamate receptors play major roles in excitatory transmission in the vertebrate brain. Among ionotropic glutamate receptors (AMPA, kainate, NMDA), AMPA receptors mediate fast synaptic transmission and require TARP auxiliary subunits. NMDA receptors and kainate receptors play roles in synaptic transmission, but it remains uncertain whether these ionotropic glutamate receptors also have essenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 29  شماره 

صفحات  -

تاریخ انتشار 2006